

Optical coherence tomography

Основы нормальной анатомии ОКТ. Элементарные изменения.

> Подготовила: Самодурова Е.В., студентка 1.6.01 в группы ЛФ

> > Кураторы: Дергачева Н.Н., к.м.н., доцент кафедры офтальмологии ФДПО ИНОПР

Демидов А.Л., старший лаборант кафедры офтальмологии ФДПО ИНОПР

План:

- Принцип и эволюция метода
- Гистология на ОКТ
- Анализ ОКТ в норме
- Элементарные изменения

Массачусетский технологический институт, 1991 год

David Huang

James G. Fujimoto

Eric A. Swanson

Оптическая когерентная томография (ОКТ)

неинвазивный и бесконтактный способ получения послойного изображения микроструктуры биологических тканей

Принцип и эволюция метода

Метод построен на интерференции света.

Интерференция света – пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн.

- Timedomain OCT
- Spectral domain OCT; SD OCT
- Swept source OCT; SS-OCT

- **Timedomain OCT** ٠
 - 400 А-сканов/с
 - 10 µm
- Spectral domain OCT; SD OCT ٠ - 20 000 А-сканов/с - 3 µm

Α

в

Α

Swept – source OCT; SS-OCT ٠ - перестраиваемая длина волны

Линейный скан макулярной области сетчатки в норме на временном оптическом когерентном томографе и спектральном томографе.

Оптическая когерентная томография: как все начиналось и современные диагностические возможности методики. Ю.С. Астахов, С.Г. Белехова. ПСПбГМУ им. акад. И. П. Павлова Минздрава РФ, Санкт-Петербург

Рефлективность

- Интенсивность сигнала, отраженного от ткани, зависит от оптической плотности и способности данной ткани <u>поглощать свет</u>.
- Рефлективность зависит от:
- 1) количества света, достигающего заданного слоя после поглощения в тканях, через которые он проходит;
- 2) количества света, <u>отраженного</u> данной тканью;
- 3) количества отраженного света, попадающего на детектор после дальнейшей абсорбции тканями, через которые он проходит.

Рефлективность

- Гипорефлективность повышенная пропускная способность структуры.
 - стекловидное тело
 - серозная жидкость
 - пустота дегенеративные пространства
 - вертикальные структуры (фоторецепторы)
- Гиперрефлективность повышенная отражающая способность структуры
 - комплекс ПЕС+мембрана Бруха
 - твердые экссудаты
 - эпиретинальная мембрана
 - невус
 - горизонтальные структуры (нервные волокна и плексиформные слои)

ОКТ и гистология

Гистологически сетчатка состоит из 10 слоев, но при оценке с помощью ОКТ мы можем проанализировать больше зон.

- 1. пигментный эпителий
- 2. слой палочек и колбочек
- 3. наружная пограничная мембрана
- 4. наружный ядерный
- 5. наружный сетчатый (плексиформный)
- 6. внутренний ядерный
- 7. внутренний сетчатый (плексиформны<u>й)</u>
- 8. слой ганглиозных, мультиполярных клеток
- 9. слой нервных волокон
- 10. внутренняя пограничная пластинка

- 1. Слой Галлера
- 2. Слой Саттлера
- 3. Хориокапилляры
 - Комплекс «пигментный эпителий – мембрана Бруха»
- Зона сочленения наружных сегментов фоторецепторов с пигментным эпителием
- Наружные сегменты фоторецепторов
- Эллипсоидная зона фоторецепторов
- Миоидная зона фоторецепторов
- 6. Наружная пограничная мембрана
- 7. Наружный ядерный слой
- . Волокна Генле
- 9. Наружный сетчатый (плексиформный) слой
- 10. Внутренний ядерный слой
- 11. Внутренний сетчатый (плексиформный) слой
- 12. Слой ганглиозных, мультиполярных клеток
- 13. Слой нервных волокон
- 14. Внутренняя пограничная пластинка

.5. Задняя гиалоидная мембрана

International Nomenclature for OCT Meeting Consensus Normal OCT Terminology

13. Interdigitation Zone

Гиалоидная мембрана и стекловидное тело

Задняя гиалоидная мембрана стекловидного тела (Posterior Hyaloid Membrane)

 В норме прилежит к внутренней поверхности сетчатки и не видна. Становится заметной при возникновении отслоек стекловидного тела и может играть важную роль в формировании витреоретинальных тракций.

Внутренняя пограничная мембрана (Internal Limiting Membrane, ILM).

 В большинстве случаев не видна на ОКТ, либо видна лишь на некоторых участках. Становится заметной при увеличении ее плотности, и в этом случае выглядит как тонкая гиперрефлективная линия, плотно прилегающая к внутренней поверхности сетчатки.

Задняя отслойка стекловидного тела

https://www.eophtha.com/posts/optical-coherence-tomography

International Nomenclature for OCT Meeting Consensus Normal OCT Terminology

13. Interdigitation Zone

Ганглиозный ретинальный комплекс

Слой нервных волокон (Retinal Nerve Fiber Layer, RNFL)

 Гиперрефлективный слой. Представляет собой аксоны ганглиозных клеток. Толщина слоя увеличивается по направлению к диску зрительного нерва.

Слой ганглиозных клеток (Ganglion Cell Layer, GCL)

• Гипорефлективный слой. Образован ядрами ганглиозных клеток.

Внутренний плексиформный слой (Inner Plexiform Layer, IPL)

 Содержит синапсы между аксонами биполярных клеток и дендритами ганглиозных и амакриновых клеток.

*Имеет решающее значение в диагностике начальной глаукомы

Chhavi Saini, MD, and Lucy Q. Shen, MD, Boston Monitoring Glaucoma Progression with OCT

International Nomenclature for OCT Meeting Consensus Normal OCT Terminology

Внутренний ядерный слой (Inner Nuclear Layer, INL)

 Как и наружный ядерный слой, является гипорефлективным. Образован ядрами биполярных клеток, а также амакриновых, горизонтальных и мюллеровских клеток.

Наружный плексиформный слой (Outer Plexiform Layer, OPL)

 Среднерефлективный слой. Соответствует синапсам биполярных клеток с фоторецепторами.

International Nomenclature for OCT Meeting Consensus Normal OCT Terminology

13. Interdigitation Zone

Волокна Генле – ОКТ и гистология

Волокна Генле **гистологически** рассматриваются как часть <u>наружного</u> <u>плексиформного слоя</u>, но, так как **волокна имеют наклон**, сканирующий луч свободно проникает между ними, благодаря чему о оптической плотности слой волокон Генле и <u>наружный ядерный слой</u> очень близки между собой и сливаются на сканах. Отростки нервных клеток, соединяющие фоторецепторы и биполярные клетки, располагаются в зоне фовеа радиально по окружности в 360 градусов и носят название волокон Генле.

Ламброзо Б., Рисполи М. ОКТ сетчатки. Метод анализа и интерпретации/ Под ред. В.В. Нероева, О.В. Зайцевой. – М.: Апрель, 2012. – 83., ил.

Clinical En Face OCT Atlas Bruno Lumbroso, David Huang, Andre Romano, Marco Rispoli, Gabriel Coscas

Визуализация волокон Генле

- При сканировании через <u>периферические отделы зрачка</u>луч света достигает сетчатки перпендикулярно по отношению к волокнам Генле, и они становятся хорошо видны на сканах
- Визуализация волокон Генле и клеток Мюллера при ретиношизисе

https://www.eophtha.com/posts/optical-coherence-tomography

International Nomenclature for OCT Meeting Consensus Normal OCT Terminology

Наружная пограничная мембрана (External limiting membrane, ELM)

Соответствует третьему гиперрефлективному слою.

Внутренний сегмент ФР

Миоидная зона фоторецепторов

Часть внутреннего сегмента фоторецептора, прилежащая к ядру. У амфибий в этой области содержится скопление сократительных миофибрилл, которые ориентируют фоторецептор к свету. Содержит оптически менее плотные структуры (ЭПР, аппарат Гольджи), поэтому имеет низкую рефлективность.

Эллипсоидная зона фоторецепторов

Содержит скопление многочисленных плотно «упакованных» митохондрий, что и придает ему высокую оптическую плотность.

Палочка

Соединение внутреннего

и наружного сегментов

Наружный

сегмент

Наружные сегменты фоторецепторов (Outer segments of photoreceptors, OS)

Визуализируются на томограммах в виде гипорефлективной полосы.

International Nomenclature for OCT Meeting Consensus Normal OCT Terminology

Зона сочленения колбочек с пигментным эпителием (Cone interdigitation with retinal pigment epithelium)

 Вершины колбочек погружаются между отростками пигментного эпителия и охватываются ими. Здесь расположено большое количество фагосом, перерабатывающих наружные сегменты фоторецепторов и обладающих высокой способностью отражать свет.

Комплекс «пигментный эпителий – мембрана Бруха» (RPE – Bruch membrane)

 Гиперрефлективность обусловлена скоплением митохондрий. Мембрана Бруха не видна на томограммах хдорового глаза, но становится хорошо различимой при потере ее адгезии с пигментным эпителием. Гипорефлективный слой между митохондриальной зоной игментного эпителия и мембраной Бруха представлен ядрами и меланосомами пигментного эпителия.

International Nomenclature for OCT Meeting Consensus Normal OCT Terminology

Слои хориоидеи

- Слой хориокапилляров тонкая полоска умеренной рефлективности
- Слой средних сосудов Саттлера широкий слой круглых или овальных гиперрефлективных контуров с гипорефлективным центром в наружных отделах хориоидеи
- Слой крупных сосудов Галлера широкий слой овальных гиперрефлективных контуров с гипорефлективным центром в наружных отделах хориоидеи

Анализ результатов сканирования

- Морфологический анализ сетчатки и хориоидеи
- Исследование структуры сегментация
- Анализ рефлективности
- Изучение аномальных образований
- Анализ теневых областей

Оценка деформации

- 1. Нормальный профиль;
- 2. Конкав-деформация всех структур глазного дна при миопии высокой степени;
- 3. Конвекс-деформация сетчатки по всей ее толщине, куполообразный профиль вследствие субретинально расположенного доброкачественного новообразования;

Ретинальные друзы

- 22. Друзы. Визуализируются три друзы с несколько гиперрефлективным содержимым; дифференцируется мембрана Бруха; наружная пограничная мембрана и линия сочленения наружных и внутренних сегментов фоторецепторов сохранены;
- Отслойка пигментного эпителия, связанная с друзами. Имеется волнообразная деформация линии пигментного эпителия, приподнимающая нейроэпителий; наружная пограничная мембрана и линия сочленения наружных и внутренних сегментов фоторецепторов сохранены; мембрана Бруха дифференцируется;

Ретинальные друзы

Друзы – глубокие морфологические изменения

Исчезновение центральной ямки

- 5. Отсутствие центральной ямки;
- 6. Конвекс-деформация сетчатки при диффузном отеке;

8. Выраженное утолщение среза сетчатки с исчезновением центральной ямки в случае диабетического макулярного отека;

Фаза кистозного отека

27. Макулярный кистовидный отек при синдроме Ирвин-Гасса.28. Выраженный макулярный кистовидный отек.

Складки

10. Ретинальные складки вследствие горизонтальной тракции со стороны эпиретинальной мембраны;

Макулярные складки

Макулярный разрыв

Макулярный разрыв с крышечкой. Сквозной дефект ткани сетчатки; крышечка видна на краю отверстия.
Сквозной макулярный разрыв. Дефект всех слоев сетчатки в центральной области; кистовидный отек по краю разрыва.

Макулярный разрыв

Сквозной макулярный разрыв

Изображение в формате 3D и фронтальный срез «en face», соответствующий изгибу слоя пигментного эпителия

Анализ результатов сканирования

- Морфологический анализ сетчатки и хориоидеи
- Исследование структуры сегментация
- Анализ рефлективности
- Изучение аномальных образований
- Анализ теневых областей

ОКТ-ангиография макулярной области

При исследовании сосудистой микроанатомии сетчатки возможно визуализировать как полнослойную проекцию сосудистого рисунка, так и автоматически разделять объемную ОКТ-реконструкцию сетчатки на 4 слоя:

- 1. Поверхностное внутреннее сосудистое сплетение (superficial inner retina) сосудистая сеть слоя нервных волокон и слоя ганглиозных клеток;
- 2. Глубокое внутреннее сосудистое сплетение (deep inner retina) сосудистая сеть внутреннего ядерного слоя;
- 3. «Наружная» сетчатка (outer retina) ограничивается наружной пограничной мембраной и пигментным эпителием;
- 4. Хориокапилляры (choroid capillary) соответствует хориокапиллярному слою сосудистой оболочки.

ОКТ-ангиография макулярной области

- Поверхностный сосудистый комплекс:
 - Радиальное перипапиллярное капиллярное сплетение
 - Поверхностное сосудистое сплетение
- Глубокий сосудистый комплекс:
 - Промежуточное сосудистое сплетение
 - Глубокое сосудистое сплетение
- Наружная сетчатка
- Хориокапилляры

ОКТ-ангиография макулярной области

Индекс кровотока перифовеальных сосудов макулярной зоны на разных уровнях (размер ОКТ-ангиограммы 3×3мм).

A — Поверхностное внутреннее сосудистое сплетение, индекс кровотока = 0,066.

Б — Глубокое внутреннее сосудистое сплетение, индекс кровотока = 0,047.

В — Наружные слои нейроэпителия, индекс кровотока = 0,008.

Г — Слой хориокапилляров, индекс кровотока = 0,112.

ОКТ диска зрительного нерва

1. Диаметр диска зрительного нерва

- 2. Диаметр экскавации диска зрительного нерва
- 3. Глубина, площадь и объем экскавации ДЗН
- 4. Площадь и объем нейроретинального пояска
- 5. Анализ толщины перипапиллярного слоя нервных волокон вокруг диска зрительного нерва (анализ TSNIT)

Диаметр диска зрительного нерва (выделен красным цветом)

ОКТ диска зрительного нерва

Границы экскавации диска зрительного нерва.

- А диаметр экскавации
- Б глубина экскавации
- В объем экскавации

- 1. Диаметр диска зрительного нерва
- 2. Диаметр экскавации диска зрительного нерва
- 3. Глубина, площадь и объем экскавации ДЗН
- 4. Площадь и объем нейроретинального пояска
- 5. Анализ толщины перипапиллярного слоя нервных волокон вокруг ДЗН (анализ TSNIT)

Горизонтальные и вертикальные диаметры ДЗН (1, 3) и экскавации (2, 4).

ОКТ диска зрительного нерва

- 1. Диаметр диска зрительного нерва
- 2. Диаметр экскавации диска зрительного нерва
- 3. Глубина, площадь и объем экскавации ДЗН
- 4. Площадь и объем нейроретинального пояска
- 5. Анализ толщины перипапиллярного слоя нервных волокон вокруг диска зрительного нерва (анализ TSNIT)

Границы нейроретинального пояска (выделены синим цветом), определяемые методом ОКТ

ОКТ-ангиография диска зрительного нерва

- А Полнослойная ОКТ-ангиограмма.
- Б ОКТ-ангиограмма на уровне поверхности сетчатки.
- В ОКТ-ангиограмма на уровне капиллярной сети слоя нервных волокон.
- Г ОКТ-ангиограмма на уровне хориокапилляров.

ОКТ-ангиография диска зрительного нерва

Индекс кровотока перипапиллярных сосудов диска зрительного нерва на разных уровнях (размер ОКТ-ангиограммы 4,5×4,5мм).

- А Полнослойная ОКТ-ангиограмма, индекс кровотока = 0,167.
- Б Поверхностная капиллярная сеть, индекс кровотока = 0,023.
- В Капиллярная сеть слоя нервных волокон, индекс кровотока = 0,008.
- Г Слой хориокапилляров, индекс кровотока = 0,162.

ОКТ переднего отрезка глаза

Использование метода позволяет получить изображение переднего сегмента глазного яблока, провести измерения:

- структур роговицы,
- УПК,
- хрусталика,
- оценить положение ИОЛ.

ОКТ переднего отрезка глаза

Визуализация угла передней камеры: а - угол закрыт; б - угол открыт

ОКТ переднего отрезка глаза

Артифакия: положение переднекамерной интраокулярной линзы

Список литературы:

- 1. С.И.Жукова «ОКТ и ОКТА: случаи клинической практики. Атлас с интерактивным контентом». М.: Апрель, 2019г. – 187с.
- 2. Ламброзо Б., Рисполи М. ОКТ сетчатки. Метод анализа и интерпретации/ Под ред. В.В. Нероева, О.В. Зайцевой. М.: Апрель, 2012. 83., ил.
- 3. Clinical En Face OCT Atlas Bruno Lumbroso, David Huang, Andre Romano, Marco Rispoli, Gabriel Coscas
- 4. https://www.eophtha.com/posts/optical-coherence-tomography

Спасибо за внимание!